Multicomponent One-Pot Synthesis of 3-Tetrazolyl and 3-Imidazo[1,2-a]pyridin Tetrazolo[1,5-a]quinolines

M. V. Basavanag Unnamatla, ${ }^{\dagger}$ Alejandro Islas-Jácome, ${ }^{\dagger}$ Andrea Quezada-Soto, ${ }^{\dagger}$ Sandra C. Ramírez-López, ${ }^{\dagger}$ Marcos Flores-Alamo, ${ }^{\dagger}$ and Rocío Gámez-Montaño* ${ }^{\text { }}$
${ }^{\dagger}$ Departamento de Química, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Noria Alta S/N, Col. Noria Alta, Guanajuato, C.P. 36050, Gto., Mexico
${ }^{\dagger}$ Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior S/N, Ciudad Universitaria, Coyoacán, C.P. 04510, CDMX, Mexico

(S) Supporting Information

Abstract

A series of 18 3-tetrazolyl-tetrazolo[1,5-a]quinolines were synthesized in $21-90 \%$ yields via a novel one-pot Ugi-azide $/ \mathrm{S}_{\mathrm{N}} \mathrm{Ar} /$ ring-chain azido-tautomerization process. We report also the synthesis of 10 3-imidazo[1,2a] pyridin-tetrazolo[1,5-a] quinolines in 28-94\% yields via a novel one-pot Groebke-Blackburn-Bienaymé $/ \mathrm{S}_{\mathrm{N}} \mathrm{Ar} /$ ringchain azido-tautomerization process. Both synthetic strategies involve the use of microwaves or ultrasound, and catalyst-free conditions. Finally, we show the synthesis of the tetrazolo[1,5a] quinoline-3-carbaldehyde and tetrazolo[1,5-a] quinoline-3dimethyl acetal at room temperature in methanol as solvent. $\mathrm{R}^{1}=c$-Hex, t-Bu, 4-OMePh, Bn, 4-OMeBn, 1,2-diOMePhEt $\mathrm{R}^{2}=\mathrm{Ph}$, allyl, propargyl, $\mathrm{Bn}, 4-\mathrm{OMeBn}, n$-Bu, c-Hex, furfury $\mathrm{R}^{3}=\mathrm{H}, \mathrm{Br} \quad \mathrm{MeOH}[1 \mathrm{M}]$, MW $\left(85^{\circ} \mathrm{C}, 100 \mathrm{~W}\right), 1 \mathrm{~h}$ $\mathrm{R}^{4}=\mathrm{H}, \mathrm{OBn} \quad$ ii $\mathrm{MeOH}[1 \mathrm{M}]$,) $)$) $\left(60^{\circ} \mathrm{C}, 42 \mathrm{kHz}\right), 2 \mathrm{~h}$

Bis-heterocycles are compounds containing two fused, merged, linked, or bound heterocyclic moieties. ${ }^{1}$ These molecules have attracted much attention of scientific communities from various fields such as agrochemistry, materials science, optics, medicinal chemistry, and other emerging areas. ${ }^{2,3}$ In this note, we report the one-pot synthesis of novel unsymmetrical bis-heterocycles containing the tetrazolo $[1,5-a]$ quinoline core bound with either 1,5-disubstituted-tetrazole (1,5-DS-T) or imidazo[1,2-a]pyridine frameworks.

Tetrazolo $[1,5-a]$ quinoline is the core of various compounds with interesting pharmacological properties, for example, anticancer, ${ }^{4}$ antifungal, ${ }^{5}$ antibacterial, ${ }^{6}$ and anti-inflammatory. ${ }^{6}$ Particularly, there is a tetrazolo[$1,5-a$]quinoline bound with a tetrazole ring, which exhibited antiallergic activity. ${ }^{7}$ Moreover, 1,5-DS-T's are considered metabolic resistant bioisosters of the cis-amide bond of peptides by adopting their effective biological conformations. ${ }^{8,9}$ Thus, $1,5-\mathrm{DS}-\mathrm{T}$ is the core of numerous bioactive products. ${ }^{10}$ As examples, Cefamandole and Latamoxeb are second- and third-generation cephalosporin antibiotics, respectively. ${ }^{11}$ Besides, imidazo[1,2-a]pyridine framework is present also in a plethora of drugs, but mainly in various treatments of brain diseases and CNS-related disorders. ${ }^{12}$ For example, zolpidem is the most prescribed drug for insomnia. ${ }^{13}$

The general method to synthesize tetrazolo $[1,5-a]$ quinolines involves a two-step process $\mathrm{S}_{\mathrm{N}} \mathrm{Ar} /$ ring-chain azido-tautomerization using as starting reagents sodium azide and 2 chloroquinolines prepared stepwise. ${ }^{14}$ Besides, 1,5-DS-T are synthesized using click reactions between organic azides and nitriles, both usually synthesized stepwise. ${ }^{15}$ In the same context, there are various reported methods to synthesize
imidazo $[1,2-a]$ pyridines, generally from precursors prepared stepwise. ${ }^{16}$ However, the Ugi-azide and the interrupted variant of the Ugi-4CR known as Groebke-Blackburn-Bienaymé (GBB) reaction are the current and most efficient methods to synthesize $1,5-$ DS-T ${ }^{17}$ and imidazo[1,2-a]pyridines, ${ }^{18}$ respectively.

As far as we know, the synthesis of unsymmetrical bisheterocycles containing the tetrazolo[1,5-a] quinoline framework bound either with $1,5-$ DS-T or imidazo $[1,2-a]$ pyridine moieties have not been reported using MCR or any other stepwise method. However, there is a previous work by Ghandi et al. describing the synthesis of 3- tetrazolyl-2-chloroquinolines in $65-85 \%$ yields via Ugi-azide reaction (Scheme 1a). ${ }^{19}$

Thus, according to our ongoing program to develop Ugiazide based methods toward bis-heterocycles containing 1,5-DS-T rings, ${ }^{20-24}$ we report the first synthesis of 3-tetrazolyl-tetrazolo[1,5-a] quinolines and 3-imidazo[1,2-a]pyridintetrazolo $[1,5-a]$ quinolines via one-pot Ugi-type $/ \mathrm{S}_{\mathrm{N}} \mathrm{Ar} /$ ringchain azido-tautomerization processes (Scheme $1 \mathrm{~b}, \mathrm{c}$). In the same context, we developed a new one-pot method to synthesize the tetrazolo[1,5-a] quinoline-3-carbaldehyde either, as aldehyde or protected as dimethyl acetal (Scheme 1d). This latter masked aldehyde can be used for further transformations, in which the tetrazolo $[1,5-a]$ quinoline system is required.

[^0]
Scheme 1. Synthetic Strategies

(c) This work - iii (GBB/ $S_{N} A r /$ ring-chain azido-tautomerization)

 1 example

$\mathrm{R}^{1}=c$-Hex, t-Bu, 4-OMePh, Bn, 4-OMeBn, 1,2-diOMePhEt $\mathrm{R}^{2}=\mathrm{Ph}$, allyl, propargyl, $\mathrm{Bn}, 4-\mathrm{OMeBn}, n-\mathrm{Bu}, c$-Hex, furfuryl $\mathrm{R}^{3}=\mathrm{H}, \mathrm{Br}$
$R^{4}=H, O B n$

The N-((1-cyclohexyl-1H-tetrazol-5-yl)(tetrazolo[1,5-a]-quinolin-4-yl)methyl)prop-2-en-1-amine (1a) was selected as model to optimize reaction conditions (Table 1). Thus, 2-chloroquinoline-3-carbaldehyde (2) was combined sequentially with 1 equiv of aniline ($\mathbf{3 a}$), two equivalents of azidotrimethyilsilane (4), and 1 equiv of cyclohexyl isocyanide (5a) using the Ugi-azide standard conditions ($\mathrm{MeOH}, \mathrm{rt}$) as starting point. The product 1a was isolated in 18% yield, together with products 6a and 7 in 40 and 16% yields respectively (Entry 1, Table 1). Then, we decided to study the effect of temperature because it has been reported that ring-chain azido-tautomerization is favored to cyclic tautomer (tetrazole) by using high temperatures. ${ }^{25}$ Thus, the reaction was performed in methanol at reflux, but the product 1a was synthesized in 55% yield, together with 6a and 7 in 10 and 4% yields, respectively (Entry 2, Table 1). In this context, we used microwaves (MW) as heat source in order to reduce the reaction time and eventually to increase the yields. The product 1a was synthesized in 75% yield without byproducts (Entry 3, Table 1). Only traces of the corresponding Schiff base (formed by condensation of 2-chloroquinoline-3-carbaldehyde (2) with aniline (3a)) were observed. A further experiment was performed increasing temperature to $110{ }^{\circ} \mathrm{C}$ by MW, but the yield was 68% without byproducts (Entry 4, Table 1). Finally, an experiment was

Table 1. Screening Conditions

6a

		yield $^{c}(\%)$			
entry	$T\left({ }^{\circ} \mathrm{C}\right)$	$t(\mathrm{~h})$	$\mathbf{1 a}$	$\mathbf{6 a}$	7
1	rt	24	18	40	16
2	85	12	55	10	4
3	85^{a}	1	75	-	-
4	110^{a}	1	68	-	-
5	60^{b}	2	44	-	-

${ }^{a}$ MW (100 W). ${ }^{b}$ US (42 kHz). ${ }^{c}$ Measured after purification.
performed using ultrasound (US) irradiation (or sonication), but the yield was 44% without byproducts (Entry 5, Table 1). It is important to mention that a change in the order of addition was done $\left(\mathrm{TMSN}_{3}(4)\right.$ after isocyanide 5a) using the optimal conditions of entry 3 , but the yield remained without changes. This latter observation gave us elements to propose a plausible reaction mechanism (see the Supporting Information for further details).

By using optimal conditions for the two irradiation methods (MW and US), we synthesized the 3 -tetrazolyl-tetrazolo[1,5a] quinolines $1 \mathbf{1 a - r}$ (Table 2). As seen, good substrate scope was found. The stereoelectronic nature of substituents in starting materials varies from alkyl to aryl and benzyl substituents in isocyanide moiety. Besides, amines with a variety in their stereoelectronic nature (aromatic, aliphatic, allylic, propargylic, benzylic and heterocyclic) were also explored to synthesize a set of 18 final products. With respect to MW heating method, higher yields were observed for 3,4dimethoxyphenethyl isocyanide derivatives (1f, 88 and 11, 90%), while the lowest was for the cyclohexyl isocyanide derivative ($\mathbf{1 r}, 33 \%$), which contains furfuryl as substituent coming from the amine moiety. As seen, similar results were found using US irradiation because higher yields were observed for 3,4-dimethoxyphenethyl isocyanide derivatives (1f, 51 and 11, 54\%), while the lowest was also for the cyclohexyl isocyanide derivative ($\mathbf{1 r}, \mathbf{2 1 \%}$) containing furfuryl ring. Overall, the yields obtained in MW assisted reactions were higher ($33-90 \%$) with respect to those observed using sonication $(21-54 \%)$. Besides, it is noteworthy that compounds $\mathbf{6 a - r}$ can be synthesized using only 1 equiv of TMSN_{3} instead of 2, but the tetrazolo[1,5-a] quinoline-3-dimethyl acetal 7 will be formed as byproduct. Adequate crystals for X-ray analysis of compounds $\mathbf{1 b}$ (CCDC: 1431691) and $\mathbf{6 b}$ (CCDC: 1482686) were obtained.

Continuing with our study, we selected the N-cyclohexyl-2-(tetrazolo[1,5-a] quinolin-4-yl)imidazo[1,2-a]pyridin-3-amine (8a) as model to optimize the one-pot process $\mathrm{GBB} / \mathrm{S}_{\mathrm{N}} \mathrm{Ar} /$ ring-chain azido-tautomerization. Thus, 2-chloroquinoline-3carbaldehyde (2) was combined sequentially with 1 equiv of all,

Table 2. Substrate Scope

		i or ii	
compound	R^{1}	R^{2}	yield $^{a}(\%) \quad$ yield $^{b}(\%)$
1a	$c-\mathrm{Hex}$	Ph	75
1b	t-Bu	Ph	88 38
1 c	4-OMePh	Ph	$62 \quad 27$
1d	Bn	Ph	$84 \quad 47$
1e	4-OMeBn	Ph	65 29
1f	3,4-diMePhEt	Ph	88 51
1 g	$c-\mathrm{Hex}$	Allyl	87 44
1h	t-Bu	Allyl	78 30
1 i	4-OMePh	Allyl	$65 \quad 29$
1j	Bn	Allyl	$74 \quad 34$
1k	$4-\mathrm{OMeBn}$	Allyl	$81 \quad 39$
11	3,4-diMePhEt	Allyl	$90 \quad 54$
1 m	c-Hex	Propargyl	74 35
1 n	c-Hex	Bn	$61 \quad 32$
10	c-Hex	4-OMeBn	$57 \quad 30$
1p	c-Hex	n-Bu	$51 \quad 33$
1q	c-Hex	c-Hex	$41 \quad 26$
1 r	c-Hex	furfuryl	$33 \quad 21$

${ }^{a} \mathrm{MeOH}[1 \mathrm{M}]$, $\mathrm{MW}\left(85^{\circ} \mathrm{C}, 100 \mathrm{~W}\right), 1 \mathrm{~h} .{ }^{6} \mathrm{MeOH}[1 \mathrm{M}]$, US $\left(60^{\circ} \mathrm{C}\right.$, 42 kHz), 2 h .

2-aminopyridine (9a), cyclohexyl isocyanide (5a), and azidotrimethylsilane (4) in methanol [1 M] at room temperature (Entry 1, Table 3). The bis-heterocycle 8a was isolated in 25% yield, together with product 10a and the tetrazolo[1,5-a]quinoline-3-dimethyl acetal (7), in 30 and 18% yields, respectively. It is noteworthy that adequate crystals for X-ray analysis of compound 8a (CCDC: 1470205) were obtained.

Table 3. Screening Conditions

$\xrightarrow[{\mathrm{MeOH}[1.0 \mathrm{M}}]]{ }$

${ }_{4}$

			yield $^{c}(\%)$			
entry	solvent	$T\left({ }^{\circ} \mathrm{C}\right)$	$t(\mathrm{~h})$	$\mathbf{8 a}$	$\mathbf{1 0 a}$	7 a
1	MeOH	rt	24	25	30	18
2	MeOH	85	12	82	-	-
3	MeOH	85^{a}	1	94	-	-
4	MeOH	110^{a}	1	76	-	-
5	MeOH	60^{b}	2	47	-	-

${ }^{a} \mathrm{MW}(100 \mathrm{~W}) .{ }^{b} \mathrm{US}(42 \mathrm{kHz}) .{ }^{c}$ Measured after purification.

Then, according to our previous observations, we decided to conduct the process at reflux, but the compound $8 \mathbf{a}$ was synthesized in 82% yield after 12 h without byproducts (Entry 2 , Table 3). The reaction was performed using microwaves as heat source, yielding 94% after 1 h . A further experiment was conducted increasing temperature to $110{ }^{\circ} \mathrm{C}$, but the product 8a was isolated in 76% yield (Entry 4, Table 3). Finally, an experiment was performed under US irradiation, but the yield was 47% without byproducts (Entry 5, Table 3). Besides, an experiment to synthesize exclusively the compound 10a was conducted using conditions of entry 3 , but without addition of trimethylsylilazide (4). Compound 10a was isolated in quantitative yield. The plausible reaction mechanism can be found in the Supporting Information.

By using optimized conditions for the two irradiation methods (MW and US), we synthesized the series of 3-imidazo[1,2-a]pyridin-tetrazolo[1,5-a] quinolines 8a-1 (Table 4). As seen, good to excellent yields were obtained (67-94\%)

Table 4. Substrate Scope

${ }^{a} \mathrm{MeOH}[1 \mathrm{M}], \mathrm{MW}\left(85{ }^{\circ} \mathrm{C}, 100 \mathrm{~W}\right), 1 \mathrm{~h} .{ }^{b} \mathrm{MeOH}[1 \mathrm{M}]$, US $\left(60^{\circ} \mathrm{C}\right.$, 42 kHz), 2 h .
under MW heating conditions, and moderate to good yields ($28-69 \%$) under sonication. It is noteworthy that products $\mathbf{8 f}$ and $\mathbf{8 k}$ could not be synthesized. We calculated minimal energy conformations for both compounds by Density Functional Theory at M06-2X/6-311G(d) level of theory (see the Supporting Information for further details). Compound $\mathbf{8 f}$ was not synthesized due to the steric hindrance between the bulky tert-butyl moiety and bromine atom coming from the 6-bromo-2-aminopyridine moiety. There is a previous study by us regarding this type of behavior for the GBB reaction involving similar substituents. ${ }^{26}$ Respective to the nonsynthesized product $8 \mathbf{k}$, there is also a strong steric strain between tetrazolo[1,5-a] quinoline moiety and the $\mathrm{N}-\mathrm{H}$ coming from the isocyanide moiety.

To conclude the work, we show the synthesis of the tetrazolo [1,5-a] quinoline-3-dimethyl acetal (7) in quantitative yield. 2-Chloroquinoline-3-carbaldehyde (2) was used as starting reagent and methanol as solvent via $\mathrm{S}_{\mathrm{N}} \mathrm{Ar} /$ ring-chain
azido-tautomerization process with azidotrimethylsilane (4) to give the tetrazolo $[1,5-a]$ quinoline-3-carbaldehyde (11), which undergoes a hydrazoic acid-catalyzed protection of the aldehyde functional group via nucleophilic addition (Scheme 2). As seen,

Scheme 2. Synthesis of Tetrazolo[1,5-a] quinoline-3dimethyl Acetal and Its Nonprotected Analogue

tetrazolo [1,5-a] quinoline-3-cabaldehyde (11) can be prepared using 1 equiv of TMSN_{3} in 1 h and the tetrazolo[1,5a] quinoline-3-dimethyl acetal (7) adding 1 equiv more of TMSN_{3} to 11 in 1 h more, or in one-pot manner from 2-chloroquinoline-3-carbaldehyde (2) using 2 equiv of TMSN_{3} in 2 h . Protection of aldehyde moiety depends on the amount of HN_{3} (formed by proton exchange between MeOH and TMSN_{3} (4)). Conditions to synthesize 7 are greener in comparison to current reported methodologies, which are stepwise and involve the use of harsh conditions like high temperatures and metallic Lewis catalysts in longer reaction time. ${ }^{27}$ Adequate crystals for X-ray analysis of the tetrazolo[1,5-a] quinoline-3-dimethyl acetal (7) (CCDC: 1482685) were obtained.

As conclusions, methodologies herein described are sustainable processes with potential application in the synthesis of bisheterocycles containing the tetrazolo $[1,5-a]$ quinoline framework from complex precursors prepared in situ in one-pot manner. The most important feature of this work lies in the development of novel strategies in which MCR reactions as Ugi-azide and GBB were combined with cascade $\mathrm{S}_{\mathrm{N}} \mathrm{Ar} /$ ringchain azido-tautomerization processes taking place in mild and green conditions toward bis-heterocycles type tetrazolo[1,5a] quinolines containing both, $1,5-\mathrm{DS}-\mathrm{T}$ and imidazo[1,2a] pyridine moieties. The synthesis of bis-heterocycles involved the combination of three processes: Ugi-type $/ \mathrm{S}_{\mathrm{N}} \mathrm{Ar} /$ ring -chain azido tautomerization to introduce high complex substituents at C-5 position of tetrazoles, C-3 of imidazo[1,2-a]pyridines and in C-3 of tetrazolo[1,5- a] quinolines. Reactions performed under microwave heating conditions gave higher yields than those using sonication. However, this is the first report describing sonication-assisted Ugi-azide and GBB reactions.

- EXPERIMENTAL SECTION

General Information. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were acquired on 400 or 500 MHz spectrometers. The solvent for NMR samples was CDCl_{3}. Chemical shifts are reported in parts per million (δ / ppm). Internal reference for NMR spectra is TMS at 0.00 ppm . Coupling constants are reported in $\mathrm{Hertz}(\mathrm{J} / \mathrm{Hz})$. Multiplicities of the signals are reported using the standard abbreviations: singlet (s), doublet (d), triplet (t), quartet (q) and multiplet (m). IR spectra were recorded by ATR method using neat compounds. The wavelengths are reported in reciprocal centimeters $\left(\nu_{\max } / \mathrm{cm}^{-1}\right)$. HRMS spectra were acquired via electrospray ionization ESI (+) and recorded via the TOF method. Reactions at reflux were performed in round-bottomed flasks using a recirculation system mounted on a sand bath with electronic temperature control. Microwave assisted reactions were performed
in vials on closed vessel mode using a CEM Discover monomodal MW reactor without pressure sensor. Ultrasound irradiated reactions were performed in vials placed into a water bath of a Branson 1510 sonicator cleaner working at $42 \mathrm{kHz} \pm 6 \%$ frequencies. The reaction progress was monitored by TLC and the spots were visualized under UV light (254 or 365 nm). Flash column chromatography was performed using silica gel (230-400 mesh) and mixtures in different proportions of hexanes with ethyl acetate as mobile phase. Melting points were determined on a Fisher-Johns apparatus and were uncorrected. Purity degree is documented product-byproduct qualitatively with copies of all NMR spectra. Commercially available reagents were used without further purification. Solvents were distilled and dried according to standard procedures.

Procedure (i) to Synthesize the Products 1a-r (MW). In a vial $(10 \mathrm{~mL})$ equipped with a magnetic stirring bar containing a solution of 2-chloroquinoline-3-carbaldehyde ($0.52 \mathrm{mmol}, 1.0$ equiv) in anhydrous $\mathrm{MeOH}[1.0 \mathrm{M}]$, were added sequentially the corresponding amine ($0.52 \mathrm{mmol}, 1.0$ equiv), azidotrimethylsilane ($1.56 \mathrm{mmol}, 3.0$ equiv) and the corresponding isocyanide ($0.52 \mathrm{mmol}, 1.0$ equiv). Then, the vial was closed and the reaction mixture was MW-heated at $85^{\circ} \mathrm{C}(100 \mathrm{~W})$ for 1 h . The solvent was removed until dryness and the crude was purified by silica-gel column chromatography using mixtures of hexanes with ethyl acetate $(7 / 3 ; v / v)$ to afford products $\mathbf{1 a}-\mathbf{r}$.

Procedure (ii) to Synthesize the Products 1a-r (US). In a vial $(10 \mathrm{~mL})$ containing a solution of 2-chloroquinoline-3-carbaldehyde ($0.52 \mathrm{mmol}, 1.0$ equiv) in anhydrous $\mathrm{MeOH}[1.0 \mathrm{M}]$, were added sequentially the corresponding amine ($0.52 \mathrm{mmol}, 1.0$ equiv), azidotrimethylsilane ($1.56 \mathrm{mmol}, 3.0$ equiv) and the corresponding isocyanide ($0.52 \mathrm{mmol}, 1.0$ equiv). Then, the vial was closed and the reaction mixture was sonicated at $60^{\circ} \mathrm{C}(45 \mathrm{kHz})$ for 2 h . Then, the solvent was removed until dryness and the crude was purified by silicagel column chromatography using mixtures of hexanes with ethyl acetate $(7 / 3 ; v / v)$ to afford products $\mathbf{1 a}-\mathbf{r}$.

Procedure (i) to Synthesize the Products 8a-I (MW). In a vial $(10 \mathrm{~mL})$ equipped with a magnetic stirring bar containing a solution of 2-chloroquinoline-3-carbaldehyde ($0.51 \mathrm{mmol}, 1.0$ equiv) in anhydrous $\mathrm{MeOH}\left[\begin{array}{ll}1 & \mathrm{M}] \text {, were added sequentially the corresponding }\end{array}\right.$ amine ($0.52 \mathrm{mmol}, 1.0$ equiv), the corresponding isocyanide (0.52 $\mathrm{mmol}, 1.0$ equiv), and azidotrimethylsilane ($1.56 \mathrm{mmol}, 3.0$ equiv). Then, the vial was closed and the reaction mixture was MW-heated at $85^{\circ} \mathrm{C}(100 \mathrm{~W})$ for 1 h . Then, the solvent was removed until dryness and the crude was purified by silica-gel column chromatography using mixtures of hexanes with ethyl acetate $(7 / 3 ; v / v)$ to afford products 8a-1.

Procedure (ii) to Synthesize the Products 8a-I (US). In a vial $(10 \mathrm{~mL})$ containing a solution of 2-chloroquinoline-3-carbaldehyde ($0.51 \mathrm{mmol}, 1.0$ equiv) in anhydrous $\mathrm{MeOH}[1 \mathrm{M}]$, were added sequentially the corresponding amine ($0.52 \mathrm{mmol}, 1.0$ equiv), the corresponding isocyanide ($0.52 \mathrm{mmol}, 1.0$ equiv), and azidotrimethylsilane ($1.56 \mathrm{mmol}, 3.0$ equiv). Then, the vial was closed and the reaction mixture was sonicated at $60^{\circ} \mathrm{C}(45 \mathrm{kHz})$ for 2 h . Then, the solvent was removed until dryness and the crude was purified by silicagel column chromatography using mixtures of hexanes with ethyl acetate $(7 / 3 ; v / v)$ to afford products $8 \mathbf{a}-\mathbf{l}$.

Procedure to Synthesize the Product 7. In a round-bottomed flask (10 mL) equipped with a magnetic stirring bar containing a solution of 2 -chloroquinoline-3-carbaldehyde ($0.52 \mathrm{mmol}, 1.0$ equiv) in anhydrous MeOH [1.0 M] under argon atmosphere, were added 2 equiv of azidotrimethylsilane ($0.52 \mathrm{mmol}, 1.0$ equiv). The flask was closed and the reaction mixture was stirred at room temperature for 2 h. Then, the solvent was removed until dryness and the crude was recrystallized using a cold mixture of hexanes with diethyl ether $(1 / 1$; $v / v)$ to afford the product 7 .

N -((1-Cyclohexyl-1H-tetrazol-5-yl)(tetrazolo[1,5-a]quinolin-4-yl)methyl)aniline (1a). Pale brown solid ($83.0 \mathrm{mg}, 75 \%$, MW) $(45.4 \mathrm{mg}, 41 \%, \mathrm{US}) ; \mathrm{mp}=174-175^{\circ} \mathrm{C} ; R_{f}=0.40($ Hexanes-AcOEt $=$ $7 / 3 v / v)$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.69(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H})$, $8.14(\mathrm{~s}, 1 \mathrm{H}), 7.92(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.89-7.83(\mathrm{~m}, 1 \mathrm{H}), 7.72-7.65$ $(\mathrm{m}, 1 \mathrm{H}), 7.54-7.46(\mathrm{~m}, 1 \mathrm{H}), 7.17-7.07(\mathrm{~m}, 2 \mathrm{H}), 6.75-6.68(\mathrm{~m}, 1 \mathrm{H})$, $6.56(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.71-5.67(\mathrm{~m}, 1 \mathrm{H}), 5.62-5.57(\mathrm{~m}, 1 \mathrm{H})$,
$3.75-3.64(\mathrm{~m}, 1 \mathrm{H}), 1.97-1.92(\mathrm{~m}, 1 \mathrm{H}), 1.75-1.70(\mathrm{~m}, 1 \mathrm{H}), 1.62-$ $1.56(\mathrm{~m}, 2 \mathrm{H}), 1.55-1.47(\mathrm{~m}, 2 \mathrm{H}), 1.39-1.28(\mathrm{~m}, 2 \mathrm{H}), 1.22-1.15(\mathrm{~m}$, 1H), 1.05-0.99 (m, 1H); ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($\left.126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 153.4$, $146.4,144.7,131.5,131.3,130.2,129.7,129.4,128.3,128.1,123.9$, 123.8, 123.6, 123.3, 119.8, 116.8, 116.7, 114.0, 58.7, 54.4, 33.5, 32.8, 25.2 (2), 24.8; FT-IR (ATR) $v_{\max } / \mathrm{cm}^{-1} 3287.4(\mathrm{~N}-\mathrm{H}), 1602.0(\mathrm{C}=$ $\mathrm{N}), 1256.1(\mathrm{~N}-\mathrm{N}=\mathrm{N})$; HRMS (ESI-TOF) $m / z[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{~N}_{9} 426.2149$, found 426.2153.

N-((1-(tert-Butyl)-1 H-tetrazol-5-yl)(tetrazolo[1,5-a]quinolin-4-yl)methyl)aniline (1b). White solid (183.0 mg , 88%, MW) (79.0 $\mathrm{mg}, 38 \%$, US); $\mathrm{mp}=166-168{ }^{\circ} \mathrm{C}$; $R_{f}=0.36$ (Hexanes-AcOEt $=7 / 3$ $v / v) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.65(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.24(\mathrm{~s}$, $1 \mathrm{H}), 7.95(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.89-7.83(\mathrm{~m}, 1 \mathrm{H}), 7.71-7.65(\mathrm{~m}$, $1 \mathrm{H}), 7.21-7.14(\mathrm{~m}, 2 \mathrm{H}), 6.92(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.83-6.78(\mathrm{~m}$, $1 \mathrm{H}), 6.76(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.93(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.92(\mathrm{~s}, 9 \mathrm{H})$, 1.64 (bs, 1H); ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 153.4, 146.7, 144.6, 131.3, 131.1, 130.4, 129.8, 129.7, 129.6, 128.7, 128.2, 123.9, 123.6, 119.9, 116.7, 113.8, 62.8, 49.2, 30.2; FT-IR (ATR) $\nu_{\max } / \mathrm{cm}^{-1}$ $3287(\mathrm{~N}-\mathrm{H}), 1602(\mathrm{C}=\mathrm{N}), 1256(\mathrm{~N}-\mathrm{N}=\mathrm{N})$; HRMS (ESI-TOF) $m / z[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{~N}_{9}$ 400.1992, found 400.1991.

Precursor of Compound 1b. N-((2-Chloro-1,2-dihydroquinolin-3-yl)(1-cyclohexyl-1H-tetrazol-5-yl)methyl)aniline (6b): white solid ($125.2 \mathrm{mg}, \sim 100 \%, \mathrm{MW}$), $\mathrm{mp}=201-202{ }^{\circ} \mathrm{C} ; R_{f}=0.30$ (Hexanes$\mathrm{AcOEt}=7 / 3 v / v) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.32(\mathrm{~s}, 1 \mathrm{H}), 8.03$ $(\mathrm{d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.80-7.71(\mathrm{~m}, 2 \mathrm{H}), 7.58-7.49(\mathrm{~m}, 1 \mathrm{H}), 7.21-$ $7.13(\mathrm{~m}, 2 \mathrm{H}), 6.83-6.77(\mathrm{~m}, 1 \mathrm{H}), 6.73-6.66(\mathrm{~m}, 2 \mathrm{H}), 6.56(\mathrm{~d}, \mathrm{~J}=8.9$ $\mathrm{Hz}, 1 \mathrm{H}), 4.84(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.79(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}, \mathrm{TMS}\right) \delta 153.6,149.1,147.4,144.7,137.9,131.1,129.7,129.6$, 128.2, 128.1, 127.5, 127.2, 119.8, 113.9, 62.7, 51.1, 30.0; FT-IR $($ ATR $) \nu_{\max } / \mathrm{cm}^{-1} 3285(\mathrm{~N}-\mathrm{H}), 1598(\mathrm{C}=\mathrm{N}), 1260(\mathrm{~N}-\mathrm{N}=\mathrm{N})$; HRMS (ESI-TOF) $m / z[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{ClN}_{6}$ 393.1588, found 393.1580.

N -((1-(4-Methoxyphenyl)-1 H-tetrazol-5-yl)(tetrazolo[1,5-a]-quinolin-4-yl)methyl)aniline (1c). Brown solid ($72.0 \mathrm{mg}, 62 \%$, MW) ($31.4 \mathrm{mg}, 27 \%$, US) ; $\mathrm{mp}=68-70{ }^{\circ} \mathrm{C} ; R_{f}=0.33$ (Hexanes$\mathrm{AcOEt}=7 / 3 v / v) ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.90(\mathrm{~s}, 1 \mathrm{H}), 8.66$ $(\mathrm{d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.23(\mathrm{~s}, 1 \mathrm{H}), 7.97(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.90-7.85$ $(\mathrm{m}, 1 \mathrm{H}), 7.74-7.68(\mathrm{~m}, 1 \mathrm{H}), 7.62-7.56(\mathrm{~m}, 5 \mathrm{H}), 7.15-7.11(\mathrm{~m}, 2 \mathrm{H})$, $7.07(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 4 \mathrm{H}), 7.03(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.82-6.78(\mathrm{~m}, 1 \mathrm{H})$, $6.65(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.54(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.90(\mathrm{~d}, J=9.3 \mathrm{~Hz}$, $1 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 161.3,154.7$, 144.7, 140.6, 131.4, 130.9, 129.8, 129.6, 129.5, 129.0, 128.9, 128.8, 128.2, 127.1, 125.8, 123.8, 122.9, 119.9, 116.6, 115.2, 115.0, 114.2, 55.7, 48.2; FT-IR (ATR) $\nu_{\max } / \mathrm{cm}^{-1} 3287(\mathrm{~N}-\mathrm{H}), 1602.8(\mathrm{C}=\mathrm{N})$, $1256.6(\mathrm{~N}-\mathrm{N}=\mathrm{N})$; HRMS (ESI-TOF) $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{24} \mathrm{H}_{20} \mathrm{~N}_{9} \mathrm{O} 450.1785$, found 450.1787.

N-((1-Benzyl-1H-tetrazol-5-yl)(tetrazolo[1,5-a]quinolin-4-yl)methyl)aniline (1d). Orange solid ($95.0 \mathrm{mg}, 84 \%$, MW) $(53.2 \mathrm{mg}$, 47%, US); $\mathrm{mp}=75-76{ }^{\circ} \mathrm{C} ; R_{f}=0.43$ (Hexanes-AcOEt $\left.=4 / 1 \mathrm{v} / v\right) ;{ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.62(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.05(\mathrm{~s}, 1 \mathrm{H})$, $7.92-7.82(\mathrm{~m}, 2 \mathrm{H}), 7.70-7.65(\mathrm{~m}, 1 \mathrm{H}), 7.16(\mathrm{~s}, 5 \mathrm{H}), 7.12-7.08(\mathrm{~m}$, $2 \mathrm{H}), 6.80-6.73(\mathrm{~m}, 1 \mathrm{H}), 6.56(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.45(\mathrm{~d}, J=7.9 \mathrm{~Hz}$, $1 \mathrm{H}), 6.05(\mathrm{~d}, J=15.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.89(\mathrm{~d}, J=15.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.17(\mathrm{~d}, J=$ $7.9 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 154.4,146.6,144.7$, 133.1, 131.8, 131.4, 130.5, 129.7, 129.6, 129.1, 128.9, 128.5, 127.7, 123.9, 123.1, 120.0, 116.9, 114.1, 52.0, 48.9; FT-IR (ATR) $v_{\max } / \mathrm{cm}^{-1}$ $3287.1(\mathrm{~N}-\mathrm{H}), 1613.4(\mathrm{C}=\mathrm{N}), 1288.5(\mathrm{~N}-\mathrm{N}=\mathrm{N})$; HRMS (ESITOF) $m / z[M+H]^{+}$Calcd for $\mathrm{C}_{24} \mathrm{H}_{20} \mathrm{~N}_{9}$ 434.1836, found 434.1841.

N-((1-(4-Methoxybenzyl)-1H-tetrazol-5-yl)(tetrazolo[1,5-a]-quinolin-4-yl)methyl)aniline (1e). Orange solid ($79.0 \mathrm{mg}, 65 \%$, MW) ($35.2 \mathrm{mg}, 29 \%$, US); $\mathrm{mp}=77-78{ }^{\circ} \mathrm{C} ; R_{f}=0.40$ (Hexanes$\mathrm{AcOEt}=7 / 3 v / v) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.91(\mathrm{~s}, 1 \mathrm{H}), 8.64$ $(\mathrm{d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.24(\mathrm{~s}, 1 \mathrm{H}), 7.96(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.90-7.84$ $(\mathrm{m}, 1 \mathrm{H}), 7.73-7.67(\mathrm{~m}, 1 \mathrm{H}), 7.62-7.55(\mathrm{~m}, 5 \mathrm{H}), 7.16-7.10(\mathrm{~m}, 2 \mathrm{H})$, $7.07(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 4 \mathrm{H}), 7.03(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.83-6.77(\mathrm{~m}, 1 \mathrm{H})$, $6.65(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.53(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.03(\mathrm{~d}, J=9.2 \mathrm{~Hz}$, $1 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 154.2,146.4$, 144.6, 133.0, 131.6, 131.3, 130.3, 129.5, 129.4, 129.0, 128.8, 128.3, 127.6, 123.7, 123.0, 119.9, 116.7, 114.0, 113.6, 51.9, 48.8, 29.3; FT-IR $(A T R) \nu_{\max } / \mathrm{cm}^{-1} 3287(\mathrm{~N}-\mathrm{H}), 1613(\mathrm{C}=\mathrm{N}), 1288(\mathrm{~N}-\mathrm{N}=\mathrm{N})$;

HRMS (ESI-TOF) $m / z[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{25} \mathrm{H}_{22} \mathrm{~N}_{9} \mathrm{O}$ 464.1941, found 464.1934 .

N -((1-(3,4-Dimethoxyphenethyl)-1 H -tetrazol-5-yl)(tetrazolo-[1,5-a]quinolin-4-yl)methyl)aniline (1f). Brown solid (183.0 mg , 88%, MW) ($106.1 \mathrm{mg}, 51 \%$, US); $\mathrm{mp}=113-115{ }^{\circ} \mathrm{C} ; R_{f}=0.44$ (Hexanes-AcOEt $=7 / 3 v / v) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.62(\mathrm{~d}$, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.98(\mathrm{~s}, 1 \mathrm{H}), 7.89(\mathrm{~d}, J=8.02 \mathrm{~Hz}, 1 \mathrm{H}), 7.87-7.82$ $(\mathrm{m}, 1 \mathrm{H}), 7.69-7.64(\mathrm{~m}, 1 \mathrm{H}), 7.15-7.05(\mathrm{~m}, 2 \mathrm{H}), 6.78-6.69(\mathrm{~m}, 1 \mathrm{H})$, $6.59-6.48(\mathrm{~m}, 5 \mathrm{H}), 6.39-6.37(\mathrm{~m}, 1 \mathrm{H}), 5.90(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.30$ $(\mathrm{s}, 1 \mathrm{H}), 5.12(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.10-5.04(\mathrm{~m}, 1 \mathrm{H}), 4.96-4.87(\mathrm{~m}$, $1 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 3.63(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 154.7, 149.2, 148.2, 146.4, 144.4, 131.5, 131.4, 130.3, 129.5, 129.4, 128.7, 128.3, 123.8, 123.0, 120.7, 119.7, 116.7, 113.8, 111.7, 111.4, 55.8, 55.7, 49.9, 48.3, 36.0; FT-IR (ATR) $\nu_{\max } / \mathrm{cm}^{-1} 3287.2(\mathrm{~N}-\mathrm{H})$, $1602.8(\mathrm{C}=\mathrm{N}), 1256.6(\mathrm{~N}-\mathrm{N}=\mathrm{N})$; HRMS (ESI-TOF) $\mathrm{m} / \mathrm{z}[\mathrm{M}+$ $\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{27} \mathrm{H}_{26} \mathrm{~N}_{9} \mathrm{O}_{2}$ 508.2203, found 508.2208.

N -((1-Cyclohexyl-1 H-tetrazol-5-yl)(tetrazolo[1,5-a]quinolin-4-yl)methyl)prop-2-en-1-amine (1g). White solid ($176.0 \mathrm{mg}, 87 \%$, $\mathrm{MW})\left(89.0 \mathrm{mg}, 44 \%\right.$, US) ; $\mathrm{mp}=177-178{ }^{\circ} \mathrm{C} ; R_{f}=0.48$ (Hexanes$\mathrm{AcOEt}=7 / 3 v / v) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.66(\mathrm{~d}, J=8.29$ $\mathrm{Hz}, 1 \mathrm{H}), 8.18(\mathrm{~s}, 1 \mathrm{H}), 7.99(\mathrm{~d}, J=7.98 \mathrm{~Hz}, 1 \mathrm{H}), 7.91-7.85(\mathrm{~m}, 1 \mathrm{H})$, $7.75-7.68(\mathrm{~m}, 1 \mathrm{H}), 5.96-5.82(\mathrm{~m}, 2 \mathrm{H}), 5.23-5.15(\mathrm{~m}, 2 \mathrm{H}), 4.83-$ $4.72(\mathrm{~m}, 1 \mathrm{H}), 3.36-3.28(\mathrm{~m}, 2 \mathrm{H}), 2.74(\mathrm{bs}, 1 \mathrm{H}), 2.18-2.05(\mathrm{~m}, 2 \mathrm{H})$, $2.03-1.88(\mathrm{~m}, 4 \mathrm{H}), 1.57-1.42(\mathrm{~m}, 2 \mathrm{H}), 1.39-1.27(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 153.9,146.9,135.3,131.6,131.4,130.4$, $129.5,128.5,124.1,123.9,117.9,116.9,58.6,51.2,50.2,33.5,33.0$, 25.5, 25.4, 24.9; FT-IR (ATR) $\nu_{\max } / \mathrm{cm}^{-1} 3309(\mathrm{~N}-\mathrm{H}), 1615(\mathrm{~N}=$ C), $1288(\mathrm{~N}-\mathrm{N}=\mathrm{N})$; HRMS (ESI-TOF) $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{~N}_{9} 390.2149$, found 390.2154 .

N -((1-(tert-Butyl)-1H-tetrazol-5-yl)(tetrazolo[1,5-a]quinolin-4-yl)methyl)prop-2-en-1-amine (1h). White solid ($148.0 \mathrm{mg}, 78 \%$, MW) ($56.9 \mathrm{mg}, 30 \%$, US); $\mathrm{mp}=119-121{ }^{\circ} \mathrm{C} ; R_{f}=0.36$ (Hexanes$\mathrm{AcOEt}=7 / 3 ; v / v) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.68(\mathrm{~d}, J=8.3$ $\mathrm{Hz}, 2 \mathrm{H}), 8.09(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.95-7.90(\mathrm{~m}, 1 \mathrm{H}), 7.76-7.71(\mathrm{~m}$, $1 \mathrm{H}), 6.56(\mathrm{~s}, 1 \mathrm{H}), 6.18-6.02(\mathrm{~m}, 1 \mathrm{H}), 5.47-5.33(\mathrm{~m}, 2 \mathrm{H}), 3.81(\mathrm{bs}$, 1H), 3.46-3.37 (m, 1H), $1.78(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (126 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 154.2,147.1,135.3,131.4,131.4,130.3,129.4,128.3,124.7$, 123.8, 117.7, 116.8, 62.2, 52.0, 50.5, 30.1; FT-IR (ATR) $v_{\text {max }} / \mathrm{cm}^{-1}$ $3335(\mathrm{~N}-\mathrm{H}), 1642(\mathrm{~N}=\mathrm{H}), 1273(\mathrm{~N}-\mathrm{N}=\mathrm{N})$; HRMS (ESI-TOF) $m / z[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{~N}_{9}$ 364.1992, found 364.1997.

N -((1-(4-Methoxyphenyl)-1H-tetrazol-5-yl)(tetrazolo[1,5-a]-quinolin-4-yl)methyl)prop-2-en-1-amine (1i). Yellow solid (167.0 $\mathrm{mg}, 65 \%, \mathrm{MW})(74.5 \mathrm{mg}, 29 \%$, US $) ; \mathrm{mp}=141-143{ }^{\circ} \mathrm{C} ; R_{f}=0.37$ (Hexanes-AcOEt $=7 / 3 v / v) ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.66(\mathrm{~d}$, $J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.24(\mathrm{~s}, 1 \mathrm{H}), 8.00(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.91-7.86(\mathrm{~m}$, $1 \mathrm{H}), 7.76-7.70(\mathrm{~m}, 1 \mathrm{H}), 7.62(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.04(\mathrm{~d}, J=8.6 \mathrm{~Hz}$, $2 \mathrm{H}), 5.84(\mathrm{~s}, 1 \mathrm{H}), 5.79-5.67(\mathrm{~m}, 1 \mathrm{H}), 5.05-4.92(\mathrm{~m}, 2 \mathrm{H}), 3.88(\mathrm{~s}$, 3H), 3.29-3.18 (m, 2H), $2.46(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (126 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 161.5,155.5,146.9,135.1,131.6,131.3,130.5,129.6,128.4$, 127.3, 126.3, 124.1, 123.9, 117.7, 116.9, 115.2, 55.9, 50.6, 50.1; FT-IR $($ ATR $) \nu_{\max } / \mathrm{cm}^{-1} 3289(\mathrm{~N}-\mathrm{H}), 1614(\mathrm{C}=\mathrm{N}), 1304(\mathrm{~N}-\mathrm{N}=\mathrm{N})$; HRMS (ESI-TOF) $m / z[M+H]^{+}$Calcd for $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{~N}_{9} \mathrm{O}$ 414.1785, found 414.1789.

N -((1-Benzyl-1 H-tetrazol-5-yl)(tetrazolo[1,5-a]quinolin-4-yl)-methyl)prop-2-en-1-amine (1j). Yellow solid ($154.0 \mathrm{mg}, 74 \%$, MW) ($70.8 \mathrm{mg}, 34 \%$, US); mp $=128-130^{\circ} \mathrm{C} ; R_{f}=0.42$ (Hexanes$\mathrm{AcOEt}=4 / 1 \mathrm{v} / v) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.61(\mathrm{~d}, J=8.1 \mathrm{~Hz}$, $1 \mathrm{H}), 7.91-7.82(\mathrm{~m}, 3 \mathrm{H}), 7.70-7.65(\mathrm{~m}, 1 \mathrm{H}), 7.21-7.12(\mathrm{~m}, 5 \mathrm{H})$, $6.01(\mathrm{~d}, J=15.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.83(\mathrm{~d}, J=15.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.79-5.71(\mathrm{~m}$, $2 \mathrm{H}), 5.10-5.02(\mathrm{~m}, 2 \mathrm{H}), 3.15-3.01(\mathrm{~m}, 2 \mathrm{H}), 2.67(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 154.8,146.7,134.9,133.5,131.5,131.3$, 129.3, 128.9, 128.6, 128.2, 127.7, 123.7, 123.6, 121.6, 117.5, 116.7, 51.6, 50.1, 41.9; FT-IR (ATR) $v_{\max } / \mathrm{cm}^{-1} 3064(\mathrm{~N}-\mathrm{H}), 1617(\mathrm{C}=\mathrm{N})$, $1274(\mathrm{~N}-\mathrm{N}=\mathrm{N})$; HRMS (ESI-TOF) $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{~N}_{9}$ 398.1836, found 398.1844.

N-((1-(4-Methoxybenzyl)-1H-tetrazol-5-yl)(tetrazolo[1,5-a]-quinolin-4-yl)methyl)prop-2-en-1-amine (1k). Pale yellow solid $(90.0 \mathrm{mg}, 81 \%, \mathrm{MW})(43.3 \mathrm{mg}, 39 \%, \mathrm{US}) ; \mathrm{mp}=137-138^{\circ} \mathrm{C} ; R_{f}=$ 0.42 (Hexanes-AcOEt $=7 / 3 \mathrm{v} / \mathrm{v})$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $8.59(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.85-7.81(\mathrm{~m}, 2 \mathrm{H}), 7.76(\mathrm{~s}, 1 \mathrm{H}), 7.69-7.64$
$(\mathrm{m}, 1 \mathrm{H}), 7.07(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.57(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.90(\mathrm{~d}, J$ $=15.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.83-5.74(\mathrm{~m}, 2 \mathrm{H}), 5.67(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.11-$ $5.09(\mathrm{~m}, 1 \mathrm{H}), 5.08-5.05(\mathrm{~m}, 1 \mathrm{H}), 3.63(\mathrm{~s}, 3 \mathrm{H}), 3.12(\mathrm{dq}, J=13.9,6.0$ $\mathrm{Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.8,154.6,146.8$, $135.1,131.5,131.4,130.2,129.4,129.3,128.4,125.3,123.8,123.6$, 117.7, 116.7, 114.1, 55.3, 51.7, 51.3, 50.3; FT-IR (ATR) $\nu_{\max } / \mathrm{cm}^{-1}$ $3311(\mathrm{~N}-\mathrm{H}), 1613(\mathrm{C}=\mathrm{N}), 1305(\mathrm{~N}-\mathrm{N}=\mathrm{N})$; HRMS (ESI-TOF) $m / z[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{~N}_{9} \mathrm{O}$ 428.1941, found 428.1947.

N -((1-(3,4-Dimethoxyphenethyl)-1H-tetrazol-5-yl)(tetrazolo-[1,5-a]quinolin-4-yl)methyl)prop-2-en-1-amine (11). Yellow solid ($110.0 \mathrm{mg}, 90 \%, \mathrm{MW}$) ($66.0 \mathrm{mg}, 54 \%, \mathrm{US}$); $\mathrm{mp}=118-119{ }^{\circ} \mathrm{C}$; $R_{f}=$ 0.40 (Hexanes-AcOEt $=7 / 3 \mathrm{v} / \mathrm{v})$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $8.66(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.94(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.92-7.86(\mathrm{~m}, 2 \mathrm{H})$, $7.75-7.70(\mathrm{~m}, 1 \mathrm{H}), 6.56-6.48(\mathrm{~m}, 2 \mathrm{H}), 6.39-6.35(\mathrm{~m}, 1 \mathrm{H}), 5.85-$ $5.75(\mathrm{~m}, 1 \mathrm{H}), 5.30(\mathrm{~s}, 1 \mathrm{H}), 5.16-5.08(\mathrm{~m}, 2 \mathrm{H}), 4.91-4.77(\mathrm{~m}, 2 \mathrm{H})$, $3.70(\mathrm{~s}, 3 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H}), 3.22(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.13-3.00(\mathrm{~m}$, $2 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 155.1,149.2,148.1,146.7$, $142.8,135.2,131.6,130.4,129.4,128.9,128.4,123.9,123.4,120.9$, 117.6, 116.9, 111.8, 111.3, 56.0, 55.9, 51.4, 50.2, 49.7, 35.9; FT-IR (ATR) $v_{\max } / \mathrm{cm}^{-1} 3287(\mathrm{~N}-\mathrm{H}), 1617(\mathrm{C}=\mathrm{N}), 1290(\mathrm{~N}-\mathrm{N}=\mathrm{N})$; HRMS (ESI-TOF) $m / z[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{~N}_{9} \mathrm{O}_{2}$ 472.2203, found 472.2213 .

N -((1-Cyclohexyl-1 H-tetrazol-5-yl)(tetrazolo[1,5-a]quinolin-4-yl)methyl)prop-2-yn-1-amine (1m). Pale yellow solid (150.0 mg , $74 \%, \mathrm{MW}$) ($71.0 \mathrm{mg}, 35 \%$, US); $\mathrm{mp}=173-174^{\circ} \mathrm{C}$; $R_{f}=0.22$ (Hexanes-AcOEt $=7 / 3 v / v) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.68(\mathrm{~d}$, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.28(\mathrm{~s}, 1 \mathrm{H}), 8.01(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.93-7.88(\mathrm{~m}$, $1 \mathrm{H}), 7.76-7.72(\mathrm{~m}, 1 \mathrm{H}), 6.17(\mathrm{~s}, 1 \mathrm{H}), 4.99-4.90(\mathrm{~m}, 1 \mathrm{H}), 3.63-3.52$ $(\mathrm{m}, 1 \mathrm{H}), 2.88(\mathrm{~s}, 1 \mathrm{H}), 2.32(\mathrm{t}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.26-2.21(\mathrm{~m}, 1 \mathrm{H})$, $7.93-7.88(\mathrm{~m}, 1 \mathrm{H}), 2.15-1.94(\mathrm{~m}, 5 \mathrm{H}), 1.84-1.79(\mathrm{~m}, 1 \mathrm{H}), 1.60-$ $1.48(\mathrm{~m}, 2 \mathrm{H}), 1.42-1.32(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 153.3,146.6,131.6,131.5,130.3,129.4,128.4,123.8,123.3,116.8$, 80.2, 73.3, 58.5, 50.3, 36.4, 33.3, 32.9, 25.4, 25.3, 24.9; FT-IR (ATR) $\nu_{\max } / \mathrm{cm}^{-1} 3340(\mathrm{~N}-\mathrm{H}), 1616(\mathrm{~N}=\mathrm{H}), 1279(\mathrm{~N}-\mathrm{N}=\mathrm{N})$; HRMS (ESI-TOF) $m / z[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{~N}_{9}$ 388.1992, found 388.1985 .

N-Benzyl-1-(1-cyclohexyl-1 H -tetrazol-5-yl)-1-(tetrazolo[1,5-a]quinolin-4-yl)methanamine (1n). White solid ($140.0 \mathrm{mg}, 61 \%$, MW) ($73.0 \mathrm{mg}, 32 \%$, US); $R_{f}=0.26$ (Hexanes-AcOEt $=7 / 3 v / v$); ${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.71(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.23(\mathrm{~s}, 1 \mathrm{H})$, $8.03(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.95-7.90(\mathrm{~m}, 1 \mathrm{H}), 7.78-7.74(\mathrm{~m}, 1 \mathrm{H})$, $7.40-7.26(\mathrm{~m}, 5 \mathrm{H}), 5.82(\mathrm{~s}, 1 \mathrm{H}), 4.64-4.57(\mathrm{~m}, 1 \mathrm{H}), 3.94(\mathrm{~d}, \mathrm{~J}=13.2$ $\mathrm{Hz}, 1 \mathrm{H}), 3.83(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.10-2.03(\mathrm{~m}, 2 \mathrm{H}), 2.01-1.93$ $(\mathrm{m}, 3 \mathrm{H}), 1.92-1.87(\mathrm{~m}, 1 \mathrm{H}), 1.80-1.74(\mathrm{~m}, 1 \mathrm{H}), 1.49-1.40(\mathrm{~m}, 1 \mathrm{H})$, 1.39-1.26 (m, 2H); ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 153.7, 146.8, 138.2, 131.5, 131.4, 130.4, 129.4, 128.7, 128.6, 128.5, 128.4, $127.8,127.3,123.9,123.8,116.8,58.3,51.4,51.0,33.2,32.9,25.3,25.2$, 24.8; FT-IR $(A T R) \nu_{\max } / \mathrm{cm}^{-1} 3313(\mathrm{~N}-\mathrm{H}), 1597(\mathrm{~N}=\mathrm{H}), 1270$ $(\mathrm{N}-\mathrm{N}=\mathrm{N})$; HRMS (ESI-TOF) $m / z[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{~N}_{9}$ 440.2305, found 440.2298 .

1-(1-Cyclohexyl-1H-tetrazol-5-yl)-N-(4-methoxybenzyl)-1-(tetrazolo[1,5-a]quinolin-4-yl)methanamine (10). Pale yellow solid ($141.0 \mathrm{mg}, 57 \%, \mathrm{MW}$) ($73.0 \mathrm{mg}, 30 \%$, US); $R_{f}=0.22$ (Hexanes-AcOEt $=7 / 3 v / v) ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.62(\mathrm{~d}$, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.12(\mathrm{~s}, 1 \mathrm{H}), 7.94(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.85-7.81(\mathrm{~m}$, $1 \mathrm{H}), 7.69-7.65(\mathrm{~m}, 1 \mathrm{H}), 7.14(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.79(\mathrm{~d}, J=8.6 \mathrm{~Hz}$, $1 \mathrm{H}), 5.72(\mathrm{~s}, 1 \mathrm{H}), 4.55-4.47(\mathrm{~m}, 1 \mathrm{H}), 3.78(\mathrm{~d}, J=13.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.72$ $(\mathrm{s}, 3 \mathrm{H}), 3.66(\mathrm{~d}, J=13.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.01-1.95(\mathrm{~m}, 2 \mathrm{H}), 1.92-1.78(\mathrm{~m}$, $2 \mathrm{H}), 1.59-1.48(\mathrm{~m}, 5 \mathrm{H}), 1.39-1.13(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (126 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.2,153.7,146.8,131.5,131.3,130.4,130.2,129.7$, $129.4,128.3,123.9,116.8,114.1,58.3,55.3,50.9,50.7,33.2,32.9,25.3$, 25.2, 24.8; FT-IR (ATR) $\nu_{\max } / \mathrm{cm}^{-1} 3340(\mathrm{~N}-\mathrm{H}), 1616(\mathrm{~N}=\mathrm{H}), 1278$ $(\mathrm{N}-\mathrm{N}=\mathrm{N})$; HRMS (ESI-TOF) $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{25} \mathrm{H}_{28} \mathrm{~N}_{9} \mathrm{O} 470.2411$, found 470.2400.

N -((1-Cyclohexyl-1 H-tetrazol-5-yl)(tetrazolo[1,5-a]quinolin-4-yl)methyl)butan-1-amine (1p). White solid ($107.0 \mathrm{mg}, 51 \%$, MW) ($70.0 \mathrm{mg}, 33 \%$, US); $R_{f}=0.39$ (Hexanes-AcOEt $=7 / 3 v / v$); ${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.62-8.68(\mathrm{~m}, 1 \mathrm{H}), 8.11(\mathrm{~s}, 1 \mathrm{H}), 7.95-$ $7.91(\mathrm{~m}, 1 \mathrm{H}), 7.84-7.79(\mathrm{~m}, 1 \mathrm{H}), 7.68-7.63(\mathrm{~m}, 1 \mathrm{H}), 5.79(\mathrm{~s}, 1 \mathrm{H})$, 4.79-4.72 (m, 1H), 2.64-2.62 (m, 2H), 2.11-2.04 (m, 1H), 2.03-
$1.97(\mathrm{~m}, 1 \mathrm{H}), 1.96-1.83(\mathrm{~m}, 4 \mathrm{H}), 1.75-1.69(\mathrm{~m}, 1 \mathrm{H}), 1.50-1.34(\mathrm{~m}$, $4 \mathrm{H}), 1.33-1.23(\mathrm{~m}, 3 \mathrm{H}), 0.82(\mathrm{td}, J=7.3,1.9,0.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 153.9,146.8,131.4,131.2,130.3,129.4$, 128.3, 124.1, 123.9, 116.8, 58.5, 52.4, 47.6, 33.4, 32.9, 32.0, 25.4, 25.3, 24.9, 20.3, 13.9; FT-IR (ATR) $\nu_{\max } / \mathrm{cm}^{-1} 3340(\mathrm{~N}-\mathrm{H}), 1617(\mathrm{~N}=\mathrm{H})$, $1277(\mathrm{~N}-\mathrm{N}=\mathrm{N})$; HRMS (ESI-TOF) $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{21} \mathrm{H}_{28} \mathrm{~N}_{9} 406.2462$, found 406.2452 .

N -((1-Cyclohexyl-1H-tetrazol-5-yl)(tetrazolo[1,5-a]quinolin-4-yl)methyl)cyclohexanamine (1q). Orange oil ($93.0 \mathrm{mg}, 41 \%$, MW) $\left(58.0 \mathrm{mg}, 26 \%\right.$, US) ; $R_{f}=0.35$ (Hexanes-AcOEt $\left.=7 / 3 v / v\right) ;{ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.61(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.52(\mathrm{~s}, 1 \mathrm{H})$, $7.94(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.84-7.80(\mathrm{~m}, 1 \mathrm{H}), 7.68-7.64(\mathrm{~m}, 1 \mathrm{H}), 5.92$ $(\mathrm{s}, 1 \mathrm{H}), 4.80-4.73(\mathrm{~m}, 1 \mathrm{H}), 4.47-4.40(\mathrm{~m}, 2 \mathrm{H}), 2.42-2.35(\mathrm{~m}, 1 \mathrm{H})$, $2.23-2.17(\mathrm{~m}, 5 \mathrm{H}), 2.12-2.05(\mathrm{~m}, 1 \mathrm{H}), 1.97-1.84(\mathrm{~m}, 4 \mathrm{H}), 1.76-$ $1.69(\mathrm{~m}, 4 \mathrm{H}), 1.47-1.37(\mathrm{~m}, 3 \mathrm{H}), 1.29-1.07(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 154.3,146.8,140.6,131.4,131.0,130.3,129.4$, 128.3, 124.6, 123.9, 116.8, 58.8, 58.5, 49.2, 33.5, 33.4, 33.1, 33.0, 32.8, 25.8, 25.4, 25.3, 24.9, 24.8; FT-IR (ATR) $\nu_{\max } / \mathrm{cm}^{-1} 3340(\mathrm{~N}-\mathrm{H})$, $1617(\mathrm{~N}=\mathrm{H}), 1276(\mathrm{~N}-\mathrm{N}=\mathrm{N})$; HRMS (ESI-TOF) $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$ Calcd for $\mathrm{C}_{23} \mathrm{H}_{30} \mathrm{~N}_{9} 432.2618$, found 432.2611.

1-(1-Cyclohexyl-1H-tetrazol-5-yl)-N-(furan-2-ylmethyl)-1-(tetrazolo[1,5-a]quinolin-4-yl)methanamine (1r). Red oil (75.0 $\mathrm{mg}, 33 \%, \mathrm{MW})(47.7 \mathrm{mg}, 21 \%, \mathrm{US}) ; R_{f}=0.22$ (Hexanes-AcOEt $=7 / 3$ $v / v)$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.61(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.15(\mathrm{~s}$, $1 \mathrm{H}), 7.94(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.85-7.81(\mathrm{~m}, 1 \mathrm{H}), 7.69-7.65(\mathrm{~m}$, $1 \mathrm{H}), 7.28-7.27(\mathrm{~m}, 1 \mathrm{H}), 6.24-6.22(\mathrm{~m}, 1 \mathrm{H}), 6.13(\mathrm{~d}, J=3.1 \mathrm{~Hz}$, $1 \mathrm{H}), 5.81(\mathrm{~s}, 1 \mathrm{H}), 4.63-4.57(\mathrm{~m}, 1 \mathrm{H}), 3.86(\mathrm{~d}, J=14.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.77$ $(\mathrm{d}, J=14.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.04-1.95(\mathrm{~m}, 1 \mathrm{H}), 1.94-1.81(\mathrm{~m}, 4 \mathrm{H}), 1.73-$ $1.68(\mathrm{~m}, 1 \mathrm{H}), 1.44-1.33(\mathrm{~m}, 2 \mathrm{H}), 1.30-1.22(\mathrm{~m}, 1 \mathrm{H}), 0.86-0.76(\mathrm{~m}$, $1 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 153.5,151.9,142.5,131.5$, 131.4, 130.4, 129.4, 128.4, 123.9, 123.6, 116.8, 110.5, 108.5, 58.4, 50.7, 43.9, 33.2, 32.9, 25.3 (2), 24.9; FT-IR (ATR) $\nu_{\max } / \mathrm{cm}^{-1} 3340(\mathrm{~N}-\mathrm{H})$, $1616(\mathrm{~N}=\mathrm{H}), 1278(\mathrm{~N}-\mathrm{N}=\mathrm{N})$; HRMS (ESI-TOF) $m / z[\mathrm{M}+\mathrm{H}]^{+}$ Calcd for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{~N}_{9} \mathrm{O} 430.2098$, found 430.2087 .

N-Cyclohexyl-2-(tetrazolo[1,5-a]quinolin-4-yl)imidazo[1,2-a]pyridin-3-amine (8a). Yellow solid (188.2 mg , 94\%, MW) (94.1 $\mathrm{mg}, 47 \%$, US); $\mathrm{mp}=204-206{ }^{\circ} \mathrm{C} ; R_{f}=0.19$ (Hexanes-AcOEt $=7 / 3$; $v / v)$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.52(\mathrm{~s}, 1 \mathrm{H}), 8.19(\mathrm{~d}, J=6.9 \mathrm{~Hz}$, $1 \mathrm{H}), 8.08(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.89(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.80-7.66(\mathrm{~m}$, $1 \mathrm{H}), 7.62-7.57(\mathrm{~m}, 2 \mathrm{H}), 7.22-7.18(\mathrm{~m}, 1 \mathrm{H}), 6.88-6.85(\mathrm{~m}, 1 \mathrm{H})$, $3.36(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.69(\mathrm{~s}, 1 \mathrm{H}), 1.72-1.66(\mathrm{~m}, 2 \mathrm{H}), 1.60-1.53$ $(\mathrm{m}, 2 \mathrm{H}), 1.47-1.42(\mathrm{~m}, 1 \mathrm{H}), 1.08-0.99(\mathrm{~m}, 4 \mathrm{H}), 0.95-0.83(\mathrm{~m}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 149.0,147.2,141.9,140.8,133.6$, 130.6, 128.6, 128.4, 127.9, 127.3, 127.2, 126.9, 124.2, 123.0, 117.6, 111.9, 56.6, 33.9, 25.6, 24.5; FT-IR (ATR) $\nu_{\max } / \mathrm{cm}^{-1} 3274(\mathrm{~N}-\mathrm{H})$, $1632(\mathrm{C}=\mathrm{N})$; HRMS (ESI-TOF) $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{~N}_{7}$ 384.1931, found 384.1929.

Precursor of Compound (8a). 2-(2-Chloroquinolin-3-yl)-N-cyclohexylimidazo[1,2-a]pyridin-3-amine (10a): Brown oil (125.4 $\mathrm{mg}, \sim 100 \%, \mathrm{MW}) ; R_{f}=0.30$ (Hexanes-AcOEt $\left.=7 / 3 ; v / v\right) ;{ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.51(\mathrm{~s}, 1 \mathrm{H}), 8.17-8.15(\mathrm{~m}, 1 \mathrm{H}), 8.02-$ $7.99(\mathrm{~m}, 1 \mathrm{H}), 7.86-7.83(\mathrm{~m}, 1 \mathrm{H}), 7.73-7.69(\mathrm{~m}, 1 \mathrm{H}), 7.61-7.59(\mathrm{~m}$, $1 \mathrm{H}), 7.56-7.51(\mathrm{~m}, 1 \mathrm{H}), 7.20-7.18(\mathrm{~m}, 1 \mathrm{H}), 6.87-6.82(\mathrm{~m}, 1 \mathrm{H})$, $3.36(\mathrm{~s}, 1 \mathrm{H}), 2.62(\mathrm{~s}, 1 \mathrm{H}), 1.60(\mathrm{~s}, 2 \mathrm{H}), 1.48(\mathrm{~s}, 2 \mathrm{H}), 1.37(\mathrm{~s}, 1 \mathrm{H})$, $0.99-0.93(\mathrm{~m}, 3 \mathrm{H}), 0.82-0.75(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $(126 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 148.7,147.3,141.3,141.1,130.9,128.4,128.1,127.5,127.1$, 127.0, 125.4, 123.2, 117.1, 112.6, 56.6, 33.9, 25.5, 24.5; FT-IR (ATR) $\nu_{\max } / \mathrm{cm}^{-1} 3275(\mathrm{~N}-\mathrm{H}), 1635(\mathrm{C}=\mathrm{N}) ;$ HRMS (ESI-TOF) $\mathrm{m} /$ $z[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{ClN}_{4}$ 377.1527, found 377.1523.
\boldsymbol{N}-(tert-Butyl)-2-(tetrazolo[1,5-a]quinolin-4-yl)imidazo[1,2-a]pyridin-3-amine (8b). Yellow solid ($172.0 \mathrm{mg}, 86 \%$, MW) (110.0 $\mathrm{mg}, 55 \%$, US); $\mathrm{mp}=146-148{ }^{\circ} \mathrm{C} ; R_{f}=0.16$ (Hexanes-AcOEt $=7 / 3$; $v / v)$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.58(\mathrm{~s}, 1 \mathrm{H}), 8.37(\mathrm{~d}, J=6.9 \mathrm{~Hz}$, $1 \mathrm{H}), 8.08(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.90(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.79-7.75(\mathrm{~m}$, $1 \mathrm{H}), 7.62-7.56(\mathrm{~m}, 2 \mathrm{H}), 7.24-7.20(\mathrm{~m}, 1 \mathrm{H}), 8.87-6.83(\mathrm{~m}, 1 \mathrm{H})$, $3.31(\mathrm{~s}, 1 \mathrm{H}), 0.95(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 148.7, 147.3, 142.5, 141.0, 136.0, 130.6, 129.5, 128.4, 127.8, 127.5, 127.3, $125.5,124.7,123.8,117.4,111.7,55.8,30.1$; FT-IR (ATR) $\nu_{\max } / \mathrm{cm}^{-1}$ $3291(\mathrm{~N}-\mathrm{H}), 1643(\mathrm{C}=\mathrm{N})$; HRMS (ESI-TOF) $m / z[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{~N}_{7} 358.1774$, found 358.1766 .

N-(4-Methoxyphenyl)-2-(tetrazolo[1,5-a]quinolin-4-yl)-imidazo[1,2-a]pyridin-3-amine (8c). Yellow solid (168.4 mg, 79\%, MW) ($93.8 \mathrm{mg}, 44 \%$, US) ; $\mathrm{mp}=202-204{ }^{\circ} \mathrm{C} ; R_{f}=0.23$ (Hexanes$\mathrm{AcOEt}=3 / 7 ; v / v) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.15(\mathrm{~s}, 1 \mathrm{H}), 9.06$ $(\mathrm{s}, 1 \mathrm{H}), 8.61(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.14(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.98(\mathrm{~d}, J=$ $9.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.91(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.84-7.80(\mathrm{~m}, 1 \mathrm{H}), 7.70-7.66$ $(\mathrm{m}, 1 \mathrm{H}), 7.52-7.47(\mathrm{~m}, 1 \mathrm{H}), 7.01-6.97(\mathrm{~m}, 1 \mathrm{H}), 6.65(\mathrm{~d}, J=8.9 \mathrm{~Hz}$, $2 \mathrm{H}), 6.47(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.61(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (126 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 154.6,145.8,131.7,130.1,130.0,128.7,125.7,124.6,124.3$, 116.9, 116.6, 115.8, 115.1, 55.6; FT-IR (ATR) $\nu_{\max } / \mathrm{cm}^{-1} 3285$ (NH), $1632(\mathrm{C}=\mathrm{N})$; HRMS (ESI-TOF) $m / z[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{23} \mathrm{H}_{17} \mathrm{~N}_{7} \mathrm{O} 408.1567$, found 408.1559.
N-Benzyl-2-(tetrazolo[1,5-a]quinolin-4-yl)imidazo[1,2-a]-pyridin-3-amine (8d). Orange solid (186.0 mg, 91\%, MW) (110.4 $\mathrm{mg}, 54 \%$, US); $\mathrm{mp}=113-115^{\circ} \mathrm{C} ; R_{f}=0.12$ (Hexanes-AcOEt $=7 / 3$; $v / v) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.65(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.54(\mathrm{~s}$, $1 \mathrm{H}), 8.26(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.01(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.84-7.80(\mathrm{~m}$, $1 \mathrm{H}), 7.72-7.68(\mathrm{~m}, 1 \mathrm{H}), 7.59(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.27-7.22(\mathrm{~m}$, $1 \mathrm{H}), 6.91-6.84(\mathrm{~m}, 5 \mathrm{H}), 6.78-6.72(\mathrm{~m}, 2 \mathrm{H}), 4.02(\mathrm{~d}, J=7.2 \mathrm{~Hz}$, $2 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 146.0,142.5,138.5,130.2$, 129.9, 129.5, 129.0, 128.3, 128.2, 128.1, 128.0, 127.7, 126.8, 125.1, 124.6, 123.2, 120.1, 117.5, 116.4, 112.0, 52.5; FT-IR (ATR) $\nu_{\text {max }} / \mathrm{cm}^{-1}$ $3267(\mathrm{~N}-\mathrm{H}), 1674(\mathrm{C}=\mathrm{N})$; HRMS (ESI-TOF) $m / z[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{23} \mathrm{H}_{17} \mathrm{~N}_{7}$ 392.1618, found 392.1613 .

5-Bromo-N-cyclohexyl-2-(tetrazolo[1,5-a]quinolin-4-yl)-imidazo[1,2-a]pyridin-3-amine (8e). Brown oil (178.3 mg, 89\%, MW) ($146.5 \mathrm{mg}, 69 \%, \mathrm{US}$); $R_{f}=0.42$ (Hexanes-AcOEt $\left.=3 / 7 ; v / v\right)$; ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.79-8.72(\mathrm{~m}, 2 \mathrm{H}), 8.10(\mathrm{~d}, J=7.9$ $\mathrm{Hz}, 1 \mathrm{H}), 7.90-6.86(\mathrm{~m}, 1 \mathrm{H}), 7.77-7.73(\mathrm{~m}, 1 \mathrm{H}), 7.56(\mathrm{~d}, J=8.2 \mathrm{~Hz}$, $1 \mathrm{H}), 7.06-7.00(\mathrm{~m}, 2 \mathrm{H}), 5.96(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.86-2.80(\mathrm{~m}$, $1 \mathrm{H}), 1.85-1.78(\mathrm{~m}, 2 \mathrm{H}), 1.55-1.48(\mathrm{~m}, 2 \mathrm{H}), 1.47-1.41(\mathrm{~m}, 1 \mathrm{H})$, $1.08-0.98(\mathrm{~m}, 2 \mathrm{H}), 0.96-0.80(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (126 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 146.3,144.5,132.2,132.1,131.5,130.6,129.9,129.3,128.3$, 125.0, 124.6, 120.6, 119.3, 117.1, 116.8, 113.2, 59.9, 32.6, 25.7, 25.3; FT-IR (ATR) $\nu_{\max } / \mathrm{cm}^{-1} 3258(\mathrm{~N}-\mathrm{H}), 1678(\mathrm{C}=\mathrm{N})$; HRMS (ESITOF) $m / z[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{BrN}_{7} 462.1036$, found 462.1026.

5-Bromo- N -(4-methoxyphenyl)-2-(tetrazolo[1,5-a]quinolin-4-yl)imidazo[1,2-a]pyridin-3-amine (8 g). Yellow oil (171.3 mg , 67%, MW) ($79.3 \mathrm{mg}, 31 \%$, US) ; $R_{f}=0.32$ (Hexanes-AcOEt $=7 / 3 ; v /$ v); ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.70-8.67(\mathrm{~m}, 2 \mathrm{H}), 8.04(\mathrm{~d}, \mathrm{~J}=$ $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.88-7.83(\mathrm{~m}, 2 \mathrm{H}), 7.73-7.69(\mathrm{~m}, 1 \mathrm{H}), 7.66(\mathrm{~d}, J=8.8$ $\mathrm{Hz}, 1 \mathrm{H}), 7.16-7.12(\mathrm{~m}, 1 \mathrm{H}), 7.10-7.07(\mathrm{~m}, 1 \mathrm{H}), 6.62(\mathrm{~d}, J=9.0 \mathrm{~Hz}$, $2 \mathrm{H}), 6.35(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.62(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}(126 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 153.3,145.3,141.9,134.1,132.3,131.1,130.1,129.3,128.3$, 126.4, 126.1, 124.4, 119.5, 119.3, 117.1, 116.7, 115.1, 114.7, 113.3, 55.5; FT-IR (ATR) $\nu_{\max } / \mathrm{cm}^{-1} 3217(\mathrm{~N}-\mathrm{H}), 1631(\mathrm{C}=\mathrm{N})$; HRMS (ESI-TOF) $m / z[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{23} \mathrm{H}_{16} \mathrm{BrN}_{7} \mathrm{O}$ 486.0672, found 486.0655.

N-Benzyl-5-bromo-2-(tetrazolo[1,5-a]quinolin-4-yl)imidazo-[1,2-a]pyridin-3-amine (8h). Yellow oil ($188.3 \mathrm{mg}, 77 \%$, MW) ($83.1 \mathrm{mg}, 34 \%$, US) ; $R_{f}=0.27$ (Hexanes-AcOEt $=1 / 1 ; v / v$); ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.64(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.28(\mathrm{~s}, 1 \mathrm{H}), 7.96(\mathrm{~d}, J$ $=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.86-7.82(\mathrm{~m}, 1 \mathrm{H}), 7.73-7.68(\mathrm{~m}, 1 \mathrm{H}), 7.58(\mathrm{~d}, J=$ $8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.12-7.05(\mathrm{~m}, 2 \mathrm{H}), 6.68-6.57(\mathrm{~m}, 5 \mathrm{H}), 6.48-6.44(\mathrm{~m}$, $1 \mathrm{H}), 6.17-6.13(\mathrm{~m}, 1 \mathrm{H}), 4.01(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 145.9,144.8,137.7,133.1,131.4,130.5,129.6$, 129.0, 128.5, 128.1, 127.3, 126.5, 125.2, 124.4, 119.8, 119.3, 117.1, 116.4, 113.1, 56.0; FT-IR (ATR) $\nu_{\max } / \mathrm{cm}^{-1} 3276(\mathrm{~N}-\mathrm{H}), 1624$ (C= N) ; HRMS (ESI-TOF) $m / z[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{23} \mathrm{H}_{16} \mathrm{BrN}_{7}$ 470.0723, found 470.0722.

8-(Benzyloxy)-N-cyclohexyl-2-(tetrazolo[1,5-a]quinolin-4yl)imidazo[1,2-a]pyridin-3-amine (8i). Yellow oil (186.0 mg, 75\%, MW) ($146.3 \mathrm{mg}, 59 \%$, US) ; $R_{f}=0.63$ (Hexanes-AcOEt $=7 / 3 ; v / v$); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.94(\mathrm{~s}, 1 \mathrm{H}), 8.71(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H})$, $8.10(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.84-7.80(\mathrm{~m}, 2 \mathrm{H}), 7.74-7.70(\mathrm{~m}, 1 \mathrm{H}), 7.54$ $(\mathrm{d}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.43-7.38(\mathrm{~m}, 2 \mathrm{H}), 7.36-7.32(\mathrm{~m}, 1 \mathrm{H}), 6.67-$ $6.63(\mathrm{~m}, 1 \mathrm{H}), 6.52(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.46(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.44$ $(\mathrm{s}, 2 \mathrm{H}), 2.76-2.68(\mathrm{~m}, 1 \mathrm{H}), 1.80-1.75(\mathrm{~m}, 2 \mathrm{H}), 1.62-1.56(\mathrm{~m}, 3 \mathrm{H})$, $1.49-1.43(\mathrm{~m}, 1 \mathrm{H}), 1.28-1.24(\mathrm{~m}, 2 \mathrm{H}), 1.14-1.01(\mathrm{~m}, 3 \mathrm{H}), 0.90-$
$0.82(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \operatorname{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 147.8, 137.1, 136.5, |135.7, 131.3, 130.9, 130.3, 129.4, 128.8, 128.3, 128.2, 127.3, 125.0, 120.5, 117.0, 116.8, 111.7, 103.0, 101.9, 70.9, 57.1, 34.0, 25.7, 25.3; FT-IR (ATR) $\nu_{\max } / \mathrm{cm}^{-1} 3284(\mathrm{~N}-\mathrm{H}), 1672(\mathrm{C}=\mathrm{N})$; HRMS (ESI-TOF) $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{29} \mathrm{H}_{27} \mathrm{~N}_{7} \mathrm{O}$ 490.2349, found 490.2344.

8-(Benzyloxy)-N-(tert-butyl)-2-(tetrazolo[1,5-a]quinolin-4-yl)imidazo[1,2-a]pyridin-3-amine (8j). Yellow solid (130.2 mg, $65 \%, \mathrm{MW})\left(56.1 \mathrm{mg}, 28 \%\right.$, US); $\mathrm{mp}=170-172{ }^{\circ} \mathrm{C} ; R_{f}=0.65$ (Hexanes-AcOEt $=7 / 3 ; v / v) ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.81(\mathrm{~s}$, $1 \mathrm{H}), 8.64(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.07-7.97(\mathrm{~m}, 2 \mathrm{H}), 7.80-7.76(\mathrm{~m}$, $1 \mathrm{H}), 7.67-7.64(\mathrm{~m}, 1 \mathrm{H}), 7.48-7.45(\mathrm{~m}, 2 \mathrm{H}), 7.34-7.23(\mathrm{~m}, 4 \mathrm{H})$, $6.58-6.55(\mathrm{~m}, 1 \mathrm{H}), 6.40(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.33(\mathrm{~s}, 2 \mathrm{H}), 0.85(\mathrm{~s}$, $9 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 147.6, 146.5, 137.6, 136.3, 131.8, 131.7, 130.4, 129.8, 129.4, 129.3, 128.6, 128.2, 128.1, 127.4, 127.3, 124.7, 121.1, 117.7, 116.7, 111.2, 103.1, 70.8, 56.5, 29.5; FT-IR (ATR) $\nu_{\max } / \mathrm{cm}^{-1} 3269(\mathrm{~N}-\mathrm{H}), 1705(\mathrm{C}=\mathrm{N})$; HRMS (ESI-TOF) $\mathrm{m} /$ $z[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{27} \mathrm{H}_{25} \mathrm{~N}_{7} \mathrm{O} 464.2193$, found 464.2203 .

N-Benzyl-8-(benzyloxy)-2-(tetrazolo[1,5-a]quinolin-4-yl)-imidazo[1,2-a]pyridin-3-amine (81). Yellow solid ($179.4 \mathrm{mg}, 69 \%$, MW) ($83.2 \mathrm{mg}, 32 \%$, US) ; mp $=134-136{ }^{\circ} \mathrm{C} ; R_{f}=0.54$ (HexanesAcOEt $=1 / 1 ; v / v) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.72-8.59(\mathrm{~m}$, $2 \mathrm{H}), 8.01(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.90(\mathrm{~d}, J=6.72 \mathrm{~Hz}, 1 \mathrm{H}), 7.83-7.79$ $(\mathrm{m}, 1 \mathrm{H}), 7.71-7.67(\mathrm{~m}, 1 \mathrm{H}), 7.56-7.52(\mathrm{~m}, 2 \mathrm{H}), 7.43-7.38(\mathrm{~m}, 2 \mathrm{H})$, $7.37-7.32(\mathrm{~m}, 1 \mathrm{H}), 6.86-6.82(\mathrm{~m}, 3 \mathrm{H}), 6.79-6.63(\mathrm{~m}, 3 \mathrm{H}), 6.50(\mathrm{~d}, J$ $=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.00(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \operatorname{NMR}(126 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 148.0,146.1,138.6,137.3,136.4,130.8,130.2,129.5,129.2$, 128.8, 128.4, 128.2 (2), 127.8, 127.4, 126.9, 124.8, 120.0, 116.5 (2), 112.0, 103.3, 71.0, 52.7; FT-IR (ATR) $\nu_{\max } / \mathrm{cm}^{-1} 3284(\mathrm{~N}-\mathrm{H}), 1614$ $(\mathrm{C}=\mathrm{N})$; HRMS (ESI-TOF) $m / z[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{30} \mathrm{H}_{23} \mathrm{~N}_{7} \mathrm{O}$ 498.2036, found 498.2031.

4-(Dimethoxymethyl)tetrazolo[1,5-a]quinoline (7). White solid ($125.1 \mathrm{mg}, \sim 100 \%$); mp $=138-141^{\circ} \mathrm{C} ; R_{f}=0.35$ (Hexanes$\mathrm{AcOEt}=7 / 3 ; v / v) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.69(\mathrm{~d}, J=8.4$ $\mathrm{Hz}, 1 \mathrm{H}), 8.15(\mathrm{~s}, 1 \mathrm{H}), 8.03-8.00(\mathrm{~m}, 1 \mathrm{H}), 7.90-7.87(\mathrm{~m}, 1 \mathrm{H}), 7.75-$ $7.71(\mathrm{~m}, 1 \mathrm{H}), 6.03-6.01(\mathrm{~m}, 1 \mathrm{H}), 3.55(\mathrm{~s}, 7 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (126 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 146.4,131.3,130.5,130.2,129.5,128.1,123.7,123.5$, 116.7, 99.3, 54.3; FT-IR (ATR) $\nu_{\max } / \mathrm{cm}^{-1} 1615(\mathrm{C}=\mathrm{N})$; HRMS (ESI-TOF) $m / z[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{~N}_{4} \mathrm{O}_{2}$ 245.1033, found 245.1023.

ASSOCIATED CONTENT

(s) Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.joc.6b01576.

Copies of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra for products $\mathbf{1 a}-\mathbf{r}$, $\mathbf{6 b}, \mathbf{8 a}-\mathbf{1}, 10 \mathrm{a}$, and 7; X-ray analysis (ORTEP) for compound $\mathbf{1 b}, \mathbf{6 b}, \mathbf{8 a}$, and 7; Plausible reaction mechanisms; Computational details (PDF)
X-ray data for compound $\mathbf{1 b}, \mathbf{6 b}, \mathbf{8 a}$, and 7 (ZIP)

AUTHOR INFORMATION

Corresponding Author

*E-mail: rociogm@ugto.mx.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

R.G.-M. is grateful for financial support from CIO-UG (009/ 2015), DAIP (859/2016) and CONACYT (CB-2011-166747Q) projects. A.I.-J (ID: I00247) and U.M.V.-B. (ID: 32510) thank UG. A.Q.-S. (707677/582770) and S.C.R.-L. (701343/ 582679) acknowledge CONACYT-México for their scholarships. All authors kindly acknowledge Laboratorio Nacional de Caracterización de Propiedades Fisicoquímicas y Estructura

Molecular for the instrumentation time provided (CONACYTMéxico, Project: 123732).

REFERENCES

(1) Soural, M.; Bouillon, I.; Krchňák, V. J. Comb. Chem. 2008, 10, 923.
(2) Premakumari, C.; Muralikrishna, A.; Padmaja, A.; Padmavathi, V.; Park, S. J.; Kim, T.-J.; Reddy, G. D. Arabian J. Chem. 2014, 7, 385.
(3) Murru, S.; Nefzi, A. ACS Comb. Sci. 2014, 16, 39.
(4) Bekhit, A. A.; El-Sayed, O. A.; Al-Allaf, T. A. K.; Abul-Enein, H. Y.; Kunhi, M.; Pulicat, S. M.; Al-Hussain, K.; Al-Khodairy, F.; Arif, J. Eur. J. Med. Chem. 2004, 39, 499.
(5) Dreikorn, B. A. US Pat. 3,764,681, Oct 9, 1973.
(6) Bekhit, A. A.; El-Sayed, O. A.; Aboulmagad, E.; Park, J. Y. Eur. J. Med. Chem. 2004, 39, 249.
(7) Wright, T. L. US Pat. 4,496,569, Jan 29, 1985.
(8) Zabrocki, J.; Smith, G. D.; Dunbar, J. B., Jr.; Iijima, H.; Marshall,
G. R. J. Am. Chem. Soc. 1988, 110, 5875.
(9) Rentería-Gómez, A.; Islas-Jácome, A.; Díaz-Cervantes, E.; Villaseñor-Granados, T.; Robles, J.; Gámez-Montaño, R. Bioorg. Med. Chem. Lett. 2016, 26, 2333.
(10) Myznikov, L. V.; Hrabalek, A.; Koldobskii, G. I. Chem. Heterocycl. Compd. 2007, 43, 1.
(11) Ostrovskii, V. A.; Trifonov, R. E.; Popova, E. A. Russ. Chem. Bull.

2012, 61, 768.
(12) Shaaban, S.; Abdel-Wahab, B. F. Mol. Diversity 2016, 20, 233.
(13) Harrison, T. S.; Keating, G. M. CNS Drugs 2005, 19, 65.
(14) Adhikari, A.; Kalluraya, B.; Sujith, K. V.; Gouthamchandra, K.; Mahmood, R. J. Adv. Res. 2012, 3, 325.
(15) Maleki, A.; Sarvary, A. RSC Adv. 2015, 5, 60938.
(16) Suloeva, E.; Yure, M.; Gudriniece, E. Chem. Heterocycl. Compd.

1999, 35, 1121.
(17) Sarvary, A.; Maleki, A. Mol. Diversity 2015, 19, 189.
(18) Devi, N.; Rawal, R. K.; Singh, V. Tetrahedron 2015, 71, 183.
(19) Ghandi, M.; Rahimi, S.; Zarezadeh, N. J. Heterocyclic Chem. 2015, 52.
(20) Gordillo-Cruz, R. E.; Rentería-Gómez, A.; Islas-Jácome, A.; Cortes-García, C. J.; Díaz-Cervantes, E.; Robles, J.; Gámez-Montaño, R. Org. Biomol. Chem. 2013, 11, 6470.
(21) Cárdenas-Galindo, L. E.; Islas-Jácome, A.; Alvarez-Rodríguez, N.
V.; El Kaim, L.; Gámez-Montaño, R. Synthesis 2014, 46, 49.
(22) Cano, P. A.; Islas-Jácome, A.; González-Marrero, J.; YépezMulia, L.; Calzada, F.; Gámez-Montaño, R. Bioorg. Med. Chem. 2014, 22, 1370.
(23) Cárdenas-Galindo, L. E.; Islas-Jácome, A.; Colmenero-Martínez, K. M.; Martínez-Richa, A.; Gámez-Montaño, R. Molecules 2015, 20, 1519.
(24) Cortes-García, C. J.; Islas-Jácome, A.; Rentería-Gómez, A. Monatsh. Chem. 2016, 147, 1277.
(25) Abdou, W. M.; Khidre, R. E.; Shaddy, A. A. J. Heterocyclic Chem. 2013, 50, 33.
(26) Kishore, K. G.; Basavanag, U. M. V.; Islas-Jácome, A.; GámezMontaño, R. Tetrahedron Lett. 2015, 56, 155.
(27) Shinde, P. V.; Labade, V. B.; Gujar, J. B.; Shingate, B. B.; Shingare, M. S. Tetrahedron Lett. 2012, 53, 1523.

[^0]: Special Issue: Heterocycles
 Received: June 30, 2016
 Published: August 25, 2016

